Students as Teachers

constructivism-scale-s

A continuum of student activities, ranging from passive through active to creative.

One of the cornerstones of my education philosophy is that students learn best when they are expected to teach concepts to others. I’ve talked about this at some length on my other blog site at: https://elementsunearthed.com/2011/03/01/second-round-of-chemistry-demostrations/. It is based on the old saying, “Give a man a fish, and you feed him for a day. Teach a man how to fish, and you feed him for a lifetime.” To which I would add, “Train a man how to teach others how to fish, and you’ve fed an entire village forever.”

desmond-at-stem-fest

My student Desmond presenting at the 2015 STEM Expo.

A number of years ago, I developed a diagram to illustrate the continuum of possible student activities ranging from students as passive consumers of educational content through students interacting with content to students as creators and producers of content. On the left (passive) side, students listen to lectures or watch a video. Since their minds wander, they maybe retain 10% of what’s taught.

In the middle, where students interact with content, are the types of activities we would label “hands on.” They are doing an active cookbook style lab or completing a step-by-step activity where the results are known and predictable. This is certainly better than passively sitting and consuming content, as they are up and doing, but we can do better. We can go beyond hands-on.

On the right side are creative students, doing self-directed inquiry labs where the results aren’t known in advance, the activities are student centered rather than teacher centered, and the students actually create a product, such as a video or lesson plan, that can be shared with others. On the far right side, students become teachers themselves and share what they have learned with others or, best yet, they actually become scientists and ask questions and determine answers, communicating their results with a larger world. What we call Project-Based Learning should largely exist on the right side of this diagram, where students work on self-determined projects with meaningful results that solve local (or even global) problems.

dave-at-stem-fest

David Black presenting at the 2015 STEM Fest at South Towne Plaza in Sandy, Utah

During the 2014-15 school year, my astronomy students at Walden School were given several opportunities to teach others and share what they’d learned. At the beginning of the school year, the STEM Action Center set up a series of areas in a building at the Utah State Fair where students and teachers from participating schools could present what they are doing. I heard about this opportunity and volunteered my students, and had six students come up with me to do a series of astronomy and chemistry related mini lessons. I had been up the day before by myself to demonstrate how to do simple 3D modeling using Sculptris by Pixologic; I took up about six laptop Macs and anyone that I could pull in and sit down I showed how to model a head. There just weren’t that many people stopping by this building. The next day, my students helped do the demonstrations and went outside to gather people to come in. Again, the numbers weren’t too high but we had fun and showed some of my standby presentations. I ran into a former colleague of mine, Paul Fowkes, who is now teaching at the Granite Technical Center.

cece-and-desmond-at-stem-fest

Cece and Desmond at the 2015 STEM Fest.

One of the other schools at the State Fair was Beehive Science and Technology Academy and I talked with the students and Director while we were there and he told me that they were planning on hosting a STEM Expo at South Towne Plaza in the spring and invited us to participate. When spring came, two of my students, Desmond and Cece, agreed to travel with me up to Sandy and present. On Saturday, April 25, we travelled up to Sandy and wheeled our materials into the Plaza on my old dilapidated equipment cart. We found that one of the Plaza’s main halls was filled up with students, mostly from Beehive, making presentations. We found a spot along one wall where we could tape up a makeshift screen and near enough to a power outlet that we could plug in our projector. We laid out examples of student STEAM projects and got ready to present.

We spent two hours going through several short demonstrations of about 20 minutes each, including our MESSENGER Student Planetary Investigator project, how to use Sculptris, creating stop motion animations of chemical reactions, and other projects my classes have worked on. Desmond and Cece had the chance to wander around and look at the other presentations going on in between helping me present, and we had a fun time of it. We also got some nice T-shirts for our troubles.

wyatt-helping-students

Wyatt helping participants during our first session at the BYU Astrofest, May 16, 2015.

On a Saturday, May 16, 2015, Brigham Young University’s Physics and Astronomy Department held their annual Astrofest and asked me to come present some of our activities, since I had done my BYU Research Experiences for Teachers research that previous summer. I came up with five classes, each to last one hour, starting at 11:00 with one hour off for lunch and to prepare for the last session. The first session was to make RGB images out of WISE infrared data, the second to use the MESSENGER data to make images of Mercury, the third to make to make a stop motion animation of the evolution of the moon, and the fourth to make 3D models using Mars data and search for landing sites for future missions. These were all computer based and merely required me to load some files onto the 12 laptops I brought with me and use my Mars posters and maps. Our last class was to make models of space probes out of candy. I thought this might be a good draw for the mostly elementary aged attendees, and Dr. Denise Stephens, the professor organizing the science day, agreed to pick up the materials and candy I would need.

simulated-moon

A simulated lunar surface at the BYU Astrofest in May 2015.

I drove up onto campus and onto the broad sidewalks to the Eyring Science Center and my son Jonathan helped me unload my minivan and take the computers, posters, etc. into the building. I drove the car back to the parking lot and we set up in the room assigned us, just off the stairs on the second floor east hallway. I had to run over to the Wilkinson Center to buy a dongle, because my Mac dongle didn’t seem to be working. Two of my students, Nate and Wyatt, met us at the ESC and helped to run the classes. My first four classes were not terribly well attended – maybe 10-15 each session. But the candy space probe session was packed, so much so that we had to run people through in shifts.

me-presenting-at-astrofest

David black presenting how to use LOLA data from the Lunar Reconnaissance Orbiter probe.

We laid out various types of candy ranging from Graham crackers, stick pretzels, and wafer cookies to Rolo candies, Skittles, Hersey’s kisses, Smarties, Tootsie Rolls, and many more. We allowed them to use coffee stirrers and wooden skewers, and glued it all together with frosting and marshmallow crème. To encourage students to build models of actual probes, I prepared copies of Mars probe diagrams such as Mars Pathfinder and the Exploration Rovers.

enhanced-color-mercury-data

Enhanced color Mercury data from the MESSENGER probe, as created by participants at BYU’s 2015 Astrofest.

A rough count of all the participants in just this one hour was about 200. Altogether, we taught about 250-260 children and parents. Jonathan was my photographer, using my iPad’s camera, and many photos were blurry but some turned out well. I am showing you some of them here.

candy-probes-table

Participants in Astrofest making candy space probe models; May 2015.

The results of this activity were fun and excellent, and some actually did look like the real thing. Others were rather fanciful. Jon built one of his own and brought it home. There was probably as much eating of the candy as there was building. The room was something of a mess after this, so we spent some time cleaning up and trying to get the marshmallow crème off the tables (somehow it got everywhere even with the tablecloths we brought). It was a fun but exhausting day. Wyatt and Nate both enjoyed themselves and were very helpful managing the crowds and helping to teach and answer questions. This was my main reason for doing this – for the benefits it would bring my own students. Wyatt told me after that even though he wasn’t planning on returning to Walden, he still wanted me to have him help me next year.

rolo-wheels

Using Rolos for wheels.

ex-ter-min-ate

Not exactly a space probe: “Ex-ter-min-ate! Ex-ter-min-ate!”

candy-pathfinder

The Mars Pathfinder lander built out of candy. I especially like the little wafer Sojourner Rover.

kids-with-probes

Building space probe models out of candy.

boy-holding-probe

Another satisfied customer . . .

crowded-room

Our candy space probe activity was a huge hit; we had to let people do this in three shifts to get everyone in, and counted about 200 people for this activity.

Advertisements

About davidvblack

I teach courses in multimedia, 3D animation, 8th grade science, chemistry, astronomy, engineering design, STEAM, and computer science at American Academy of Innovation in South Jordan, Utah. Previously, I taught similar courses at Walden School of Liberal Arts in Provo, Utah and Media Design Technology courses at Mountainland Applied Technology College (MATC) in Orem, Utah. I am part of the Teachers for Global Classrooms program through the U.S. Department of State and will be traveling to Indonesia in the summer of 2017 as an education ambassador and global educator. I am passionate about STEAM education (Science, Technology, Engineering, Arts, and Mathematics); science history; photography; graphic design; 3D animation; and video production. My Spaced-Out Classroom blog is for sharing lessons and activities my students have done in astronomy. The Elements Unearthed project will combine my interests to document the discovery, history, sources, uses, mining, refining, and hazards of the chemical elements in the form of audio, video, and written podcasts that all can share and learn from.
This entry was posted in Uncategorized and tagged , , , , , , , , , , . Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s