Launching the Mars Project

Mars group leaders

Some of the student leaders for our Mars project at AAI. Out of 13 projects, 7 were led by female students and four were led by 7-8th grade students.

With our first semester seminars done in the middle of January 2017, the students were as ready as they could be to start our school-wide Mars Exploration project at American Academy of Innovation. Whether or not the teachers were ready is another story, but we went ahead and dived right in. As a school with a project-based learning (PBL) emphasis, we wanted to show our willingness to follow our mission even if we didn’t know everything about how to manage a school-wide project. We would learn by doing, and if we made mistakes and didn’t get things completely right, then we would make course corrections as needed and learn how to do it better for next year. We wanted to model the kind of risk-taking and resiliency we hoped to teach to our students.

Group leaders waiting to speak

Some of our Mars Project group leaders waiting to speak about their projects to parents at a Back to School night.

As the first semester ended, we put out a call for proposals. We asked interested students to write up a description (using a rubric we created) for a team project they would like to lead. It could use any approach or be from the perspective of any subject area, but it had to have the central theme of Mars Exploration. Students had to write up a description of what the project would be about, their objectives, the kinds and numbers of students they would have, and a basic timeline of how they would use our project periods with the due date for final presentations being April 28, 2017.

Sarah poster group

Some of the members of the history poster project, including Sarah (back row left) who was the team leader.

We received 14 proposals, but one came in after the deadline and was so incomplete that it had to be disqualified. Our goal was to teach students real-world skills for applying for jobs, so once the proposals were accepted, I posted a description of each project up on the walls all over school and asked other students to choose which teams they wanted to join and sign up for an interview time slot with the team leader(s). They had to write up a resume and a cover letter and provide it to the team leader(s) in advance. We decided (mostly I decided, I have to admit) that students who didn’t apply to be on a team or who weren’t selected would be required to create their own individual or small group projects.

Video game advert-s

I posted descriptions of all the projects all over the school. Students signed up for times to interview with the team leaders. One team decided to post advertisements to recruit the best students. We tried to simulate real world job interview skills.

On the day of the interviews, the team leaders set up tables in the library and students came in during their scheduled times. Some teams had just one leader, others had co-leaders that helped to interview. I was impressed with how well prepared the leaders were, and overall how well the students did who were interviewing for teams. Some interviewed for several teams. We let the team leaders decide who would be on their teams, and if someone was wanted for multiple teams, then the students could decide for themselves.

Interviews 2

Students interviewing for “jobs” on our Mars Project teams. Each student decided which teams to apply for, wrote cover letters and created a resume. The team leaders took their responsibilities very seriously and did a fantastic job interviewing candidates.

We grouped the entire school together, grades 6-11 (we had no seniors that first year). This wound up being an issue as some of the younger students weren’t selected to be on teams because they didn’t put together a convincing resume or didn’t interview well. They didn’t have the experience to self-regulate doing an individual project. Although not getting selected for something you want is a real life experience, sixth grade is a bit young to confront this reality. Even so, many of the sixth graders not in teams spontaneously created their own teams as the project was continuing on. Our biggest problem was those students who didn’t apply to be on a team and didn’t want to do their own projects, either. Given that we billed ourselves as a PBL school, it seems strange that they would choose to come to AAI if they don’t like projects.

Interviews 4

The Mars Novella group leaders interviewing a candidate for their team.

Overall, about 60 students out of 220 were not selected or didn’t apply to be on teams. About 40 of these either formed their own small teams or created individual projects. By my own somewhat inaccurate estimate, about 20 students did not complete any projects. This corresponds fairly well to the percentage of students who get Fs in a class (around 7-8% for my classes). As much as I would like all students to pass, there will always be those that work very hard to fail; I provide many opportunities for students to demonstrate what they have learned, so a student has to be very deliberate about failing. The students who didn’t do projects put a great deal of effort into not doing them, as we had two teachers who worked with them and constantly encouraged them.

As for the main teams, however, we had basically eleven projects. Two teams wanted to build Mars habitats that they could live in for a few days, and at first they were separate. One team jumped out ahead in getting supplies and building their habitat out in a corner of the parking lot by the dumpsters. The other team was slower getting started, so we eventually combined the two and had the second team build a scale model of the habitat. We also had two groups growing plants (radishes, endive, etc.) in simulated Mars soil under different lighting and watering conditions. These were ran through the biology classes, so their data was combined for the final presentations.

Interviews for Mars groups

Mars Project team leaders interviewing candidates in our school library. Some of the teams interviewed in the study rooms and posted their schedules on the doors, some did group interviews, etc.

Here is a rundown of the 11 projects:

Mars Soil Growth Experiment: Our biology teacher was able to run down Mars soil simulant at the University of Leiden in the Netherlands, as NASA no longer makes the stuff. He eventually found a second source, so we wound up with a large bag of Martian pseudo soil. They set up an experiment to plant various vegetables (such as radishes and endive) in both Mars and Earth soils and test growth under various light conditions (red light similar to Mars in color and intensity and more white light for Earth) and water conditions. They measured how well the seeds sprouted and measured their growth over about a two month period.

Moustronaut Project: One group wanted to design, build, and test a three-stage rocket to launch a mouse and test it for acceleration and launch stresses under Mars conditions. They added a Bluetooth camera, accelerometer, and altimeter. I insisted that they test the rocket with the instruments but not the mouse (an unmoused mission?) to make sure the mouse would survive before they launched it into the stratosphere. They ordered parts, built the rocket from scratch (not a kit), rescued a white feeder mouse from a pet store that would have been fed to a snake (so they saved its life), and test launched the rocket. I’ll report on how things went in a later post.

Mars Novella Project: One group wanted to write a science fiction novella about a colony on Mars over multiple generations. They drew illustrations for the novel, assigned different chapters to be written by group members, worked out a plot, and edited the final book.

Mars Colony Design Project: One group wanted to use artistic skills to design a layout and illustrations for their own version of a Mars colony (separate from the Novella group or my group’s Arrakeen sculpture). They also helped to paint the Mars habitat in our parking lot.

Mars Exploration History: One group wanted to further research the history of Mars exploration and create a poster of their findings. Once done with this, they started working on a short story about Mars.

Amanda speaking to parents

Amanda, one of our Mars Project team leaders, addressing a group of parents about her Mars Novella project.

Mars Habitat Project: Two groups (later one combined group) designed a working model of a habitat that astronauts could live in on Mars and built it in our parking lot. Their goal was to live inside it for two days and one night, with Mission Control providing crises and monitoring telemetry and biometrics. They got donations of lumber from local stores and the team leader’s father helped them with building the habitat. Weather was a bit of an issue, but they worked on it whenever possible.

Mars Simulation Game: A group created a roll-playing game for groups that involved conflict and resource allotments between several colonies during a crisis on Mars. They worked out the scenarios, wrote up the details and rules, and had most of the studentbody play their simulation during one of our Mars project days, while videotaping and measuring the results.

Mars Computer Game: Another group with expertise in computer programming (some of whom had been in my computer science class the previous semester) designed a video game based on Mars, created the content files, and wrote a program for it using the Unity engine. They had to teach each other programming skills, design the interface, and create the files.

Mars Sports Project: One team, under the leadership of the PE teacher, wanted to design a game that could be played successfully under Mars gravity conditions. They worked out the rules, the game play, the teams and their logos, and built a model of the stadium where the game would be played. Because of budget shortfalls, the PE teacher was laid off in late January just as the project was getting started, so the team student leaders had to step things up and provide all the leadership for the project. They built a prototype goal area and practiced playing the game.

Interviews 3

Interviews for Mars Project groups. The leaders each prepared a list of questions to ask the candidates.

Mars Landing 3D Animation: One team with students from my 3D modeling classes wanted to design a Mars lander and take our space habitat project further. They used several 3D modeling programs, including Blender, Daz3D Carrara and Bryce, and Sculptris to build and assemble the parts of a lander, then add Mars a Mars terrain using MOLA data. A sub-team created a 3D printout of the rocket and test it in a homemade wind tunnel and videotaped the results. I helped to mentor this project somewhat, although the student leader did a good job of working with and training her team.

Mars Project Documentary Video: The main project that I mentored was to document what everyone else was doing with their projects so that we could put together a final video of the whole thing. We collected whatever cameras we could get, including my own cameras, including my Canon videocamera, a GoPro camera, my iPad, and whatever else we could scrounge (cell phones, etc.). I received a grant from the Utah STEM Action Center to buy a new school camera and other equipment part way through the project, which helped a great deal. As we had our Project Friday times, my students would scatter out to the various groups and take photos and videos of their activities. The challenge was getting all those cameras back and downloaded at the end of the day.


Once the projects were underway I coordinated with the team leaders, having weekly meetings with them on Thursdays before project time to teach them some leadership skills and check in on their progress. As for representation in our team leaders and co-leaders, 7 out of 13 were female and 6 male, and four of our projects were led by 7th and 8th grade students. We had a good cross section of subject area types ranging from PE to art to writing to science to digital media.

Once the teams were established and the projects began, the mentor teachers worked with the teams to keep them on track. I focused on having the team leaders stick to a series of deadlines such as having their planning done within two weeks, their design finished over 2-3 weeks, and their prototypes built and tested by the end of March. These milestones followed the engineering design cycle, which I had taught to many students first semester as part of my Innovation Design class. Some teams did better at sticking to the timeline, but by the midway point they were all progressing well even if some were a bit behind schedule.

Some of the student leaders had difficulties working with unmotivated students, and every group had one or two people who were letting their teammates do all the work, the so-called “free rider” problem in any group project. I tried to let the team leaders learn how to solve these problems on their own, with some advice and suggestions, but I did not want to jump in and solve the problems for them. We were trying to train leadership and collaboration skills as much or more than learn about Mars. We eventually allowed team leaders to give warning “pink slips” to non-contributing team members, and a few were “fired” from their teams and asked to join the individual projects group meeting in the library. Once this happened a few times, we had less problems and some of the fired team members successfully applied to be reinstated in their jobs.

Knowing that what we were doing might be of interest in academic circles, I wrote a proposal in January 2017 for a poster at the NASA Lunar and Planetary Science conference held in Houston each March. In my next post, I’ll describe our trip to the conference.

Posted in Uncategorized | Tagged , , , , , , , , , | Leave a comment

Mars Seminars: Preparing for a School-wide PBL

Mars reflected in eye

Mars reflected in an astronaut’s eye. A student project from our Mars Seminars at AAI.

In my previous three posts, I’ve talked about how my students at American Academy of Innovation created an animation of a space habitat for astronauts to live in on their way to Mars, how they learned to use Mars MOLA 3D altitude data, and how they built a Mars colony sculpture. These were all classroom-level projects designed to help prepare them for our school-wide Mars Project second semester. Since these projects were only for my science and technology students, we decided as a faculty that more preparation was needed for all of our students to get up to speed on Mars exploration.

Earthrise over Moon

Earth Rising Over the Moon – a student art project for our Mars Seminars.

We shortened our Friday classes in December and January down to 45 minutes each to make room for an additional Mars Seminar class, with four Fridays altogether. Each teacher came up with classes ranging from one class period to four. Students could choose which class to sign up for each Friday.

Here are some of the seminars:

Mars Art: Our art teacher had students create projects with a space and Mars theme, and we got a wide range of paintings, drawings, and sculptures.

Mars in Fiction: Our Language Arts teacher had students read and discuss Mars related science fiction (with some excursions into other science fiction, such as having them read Dune).

Candy probes seminar

Making Mars probes out of candy, one of my Mars Seminars.

Dumb Ways to Die on Mars: Our PE teacher researched what it would take to stay healthy on the way to Mars and while living there, and had students participate in Mars themed sports activities and games.

Mars Space Probes: I found paper models of Mars space probes online and had students build the models.

Candy probe

A candy Mars probe.

Mars Candy Probes: We also built possible Mars probes using candy and cookies based on actual diagrams of Mars probes. This one was very well attended and very messy, but fun.

Mars Landing Site Selection: Students had to pick a possible landing site for the 2020 Mars Rover based on mission requirements for a safe (relatively flat and crater/boulder free location), scientifically interesting (near areas of long standing water), etc.

Me teaching Mars seminar

Me teaching the Mars Landing Site Selection activity. My science classroom was having cabinets installed, so I had to teach out of the library for about a month.

History of Mars Exploration: Our history teacher provided a seminar on the history of Mars – from Giovanni Schiaparelli and Percival Lowell to the present.

Financing a Trip to Mars: Our business teacher taught a seminar on researching and estimating how much an actual human expedition to Mars will cost and whether or not such an expense would be worth it.

Mars at night

The Red Planet at Night – Mars glows red-orange in the night sky above a forest on Earth.

While the seminars were going on, we discussed with the students what our final school-wide project would look like and asked any interested students to think of projects they might want to lead and write proposals for. These proposals were due at the end of the semester so that we could decide on them and make preparations. Altogether 13 proposals were accepted, although some groups had to be combined (two on growing plants in Mars soil, two on building a Mars colony module).

Smiley probe

A happy Mars probe.

As our first semester ended, we were approaching the launch of our Mars project. Some of the teachers were nervous to be starting so soon and didn’t think we were ready. I knew there would be challenges and glitches along the way, and that we were jumping in headfirst and more or less blindfolded, but this was the best way for us to learn: by actually doing a project. We could have researched project-based learning for years, taken trips to visit schools that are doing this, and planned this out to the smallest detail and still not have been 100% ready to start. We billed ourselves as American Academy of Innovation, and innovation requires a willingness to take risks. We had prepared ourselves enough that it was time to take a reasonable risk. So off we went!

Phobos colony

Phobos Colony, orbiting Mars

Next post will describe the 13 projects and how student leaders recruited team members.

Mars art projects

Mars Art seminar

Posted in Uncategorized | Tagged , , , , , , | Leave a comment

Traveling to Mars

Ship entering orbit-m

Ares Voyager entering orbit around Mars. The Orion Capsule (with blue solar panels) docks with the habitat (white cylinder). The landing craft is on the left.

I taught STEAM (physical sciences, technology, engineering, digital and traditional arts, and mathematics) classes at American Academy of Innovation in South Jordan, Utah during the 2016-17 school year (which was the first year of operation). The charter and mission of the school is to ignite a passion for learning in students through project-based learning (PBL). I have done many projects in my own classrooms (as you can see from reading my blog posts), but this is the first time I was at a school that has a school-wide PBL emphasis.

Initial sketch

Original student concept sketch for the Mars mission space habitat.

At the start of the school year, as we learned more about what PBL involves, we talked as a faculty on what sorts of projects we would want to implement. We thought, as a new school, we should start gradually and train the students on how to learn through projects. We also knew we would need to implement at least one school-wide project this first year to “get our feet wet” so to speak and have a foundation on which to build for future years.

Top view-ship-s

Top view of the Ares Voyager spaceship assembly. The Orion capsule (with blue solar panels) is docked with the Docking Module. The main inflatable habitat is the white cylinder, with fuel, air, and water tanks in gold. The VASIMR drive is on the left. The pieces were modeled by my students, and I assembled, textured, and animated them.

We identified four possible subjects for our project, and at the start of our second term we put the four ideas to a student vote. One of the important aspects of project-based learning is that students should have a voice and choices in the projects they work on and how they approach those projects. Of the four ideas, the one that received the highest votes by far was the theme of Mars exploration.


Now I swear I didn’t influence the vote. I kept the language neutral for the descriptions we sent to the students. I do have to admit that I might have “sweetened the well” by using the example of Mars exploration as a possible project in the open house meetings we had during the summer. But of course, given my background, I was excited that this would be our first overall project.

Hab video title

AAI Mars space habitat video title frame

The next step was to get the students up to speed on Mars and its exploration history. We modified our schedule, shortening Friday classes from one hour to 45 minutes to fit in an extra Mars period. The teachers designed a series of seminars to last for four weeks at the end of the semester, and students signed up for which ones they wanted to attend. I’ll talk about these seminars in more detail in my next post.

Jason narrating

Jason narrating the video in front of a green screen, with an image of Mars added behind him. This is of a river channel running north from Argyre Planitia.

Knowing that there were no guarantees that we would be successful, I wanted to “hedge our bets” a bit by creating some small-scale projects in my classes first semester that could be used as examples for the second semester groups. My 7-8 grade astronomy students decided to participate in a contest for a 2-minute video describing a space habitat that astronauts could live in as they travel from Earth to Mars. This contest was sponsored by Lockheed Martin, which is building the Orion capsule and the habitat it will dock with.

Ryan narrates Orion launch

Ryan narrating the Orion launch and docking animation sequence.

We started by planning out what the habitat would look like. Students divided up into teams, and the designers sketched the spaceship parts and the habitat inside and out. Each team had a different part or system of the ship, such as the VASIMR drive; the fuel, air, and water tanks; the recycling system; the main habitat; the docking modules; the Orion capsule; and the Mars lander. As these teams were researching what these parts might look like and finalizing their designs, I taught the basics of 3D modeling in Daz3D Bryce to our modeling group. Meanwhile, the writers were gathering information from the research and design teams and creating a final script. One student created a 3D space scene to place the spaceship in, including an Earth, nebulas, stars, and Mars.

Jezero and Hargrave-labels

Jezero Crater, one of the three finalists for the Mars 2020 rover landing site.

The student-built pieces of the spaceship were saved in separate files, then merged together and textures added. We decided to name the spaceship/habitat the Ares Voyager. Because of the time involved, I took the final 3D file and created a series of animations and rendered them out. The first showed the Orion capsule orbiting Earth. The second showed it moving to a higher orbit and docking with the Mars spaceship. The third showed the spaceship with Orion firing up its main engines and leaving Earth orbit. The fourth showed it spinning around to fire its engines as retrorockets to slow down into Mars orbit.

Jezero Crater-labels

Jezero Crater closeup with features labeled. This image was rendered using Mar MOLA data from the Mars Global Surveyor probe.

While I was rendering out these animations at home, the scriptwriters finished their scripts and two students, Ryan and Jason, became our narrators. We rigged up a green screen and lit it carefully. Ryan and Jason recorded our script, with several takes for each paragraph. We also began the process of video editing. That was as far as we had time for first semester, and we didn’t get far enough to enter the video into the contest, but that’s OK. The point was to collaborate on a great project and learn about Mars exploration in advance of the main project.

Orbits diagram

Planet orbit diagram. I did the orbits to scale, with correct orbital periods.

Over the following two months I continued to work on this project, creating some additional animations showing the orbits and how a space mission would launch for Mars, stay there for about 18 months, and then return. The orbits dictate that the mission would be 30 months long.


Now I have completed the editing process and have posted the final video on my YouTube channel at:

It is a bit longer than the original target of two minutes, and has a few glitches that still need ironing out, but I hope you enjoy it. Considering the students knew nothing about 3D modeling and very little about Mars missions or orbits, they did a fantastic job.

Path to Mars-green dot

Ryan narrating the spaceship’s path, shown as the green arc and dot. Here the ship leaves Earth, slows down, and moves out to Mars’ orbit. Earth overtakes and moves ahead of the ship. The halfway point occurs during inferior conjunction, or oppostion, when the Sun, Earth, and Mars are aligned. The entire journey takes 6-8 months using conventional rockets, shorter for a VASIMR drive.

To learn about the orbits, I also had the students do a human orrery activity where I laid out ropes into circles that were the right proportional diameters, marked off with tape to represent every two weeks of a planet’s orbit. I first saw this activity at a workshop at Goddard Space Flight Center in 2015 for my MAVEN Educator Ambassador program. I’ll write about this in a future post. Once they were lined up, I called out two weeks at a time and had them move forward around the rope circles. It soon became obvious that Mercury is the fastest planet and Mars lagged far behind.

Whole ship w labels-s

A render of the entire ship with labels. The ship would go into orbit around Mars and the astronauts would take the landing craft (right) down to the surface.

Then I demonstrated how a space probe or human mission would have to travel. It must launch when Earth is overtaking Mars in order to minimize the time in transit when the astronauts are most vulnerable to solar flares and radiation. This occurs about three months before inferior conjunction. The astronauts will travel 6-8 months to get to Mars. The spaceship must overtake Mars from behind and reach a point in space where Mars will be at the right time to intersect it. Then the astronauts must wait at Mars until Earth overtakes Mars again before they can start the 6-8 month journey back. If we can develop a faster method of getting to Mars instead of traditional chemical rockets (such as a hydrogen plasma-based VASIMR drive), we could get to Mars in three months, stay a month, and return without having to wait for the planets to align again, perhaps 7-8 months total instead of 30 months with chemical rockets.

Path to Mars

Our video playing on YouTube. Just search for “David Black mars habitat” in the YouTube search engine.

I videotaped the exercise, knowing I would need it for my plan to create a video documentary of the whole Mars project. There were more activities we did in my classes first semester, such as building a Mars colony sculpture out of junk, which I have already written about.

Posted in Uncategorized | Tagged , , , , , , , , , , | 1 Comment

Arrakeen Colony, Mars


Arrakeen City-all

A view of Arrakeen Colony, a model we made of a possible city on Mars.

During our fall 2016 semester at American Academy of Innovation, we selected Mars Exploration as the theme of our first school-wide project. To prepare my classes and get students excited, I involved them in creating several projects related to Mars.

Mars colony sketch

Initial sketch for our Mars colony sculpture. We designed it based on an old autoclave that was donated to my school, supported by metal pipes and glass beams (made from microscope slide disinfecting bottles). The first level is for manufacturing, the second is residential housing, the third is administration offices and commercial buildings, the fourth is for the university, mayor’s mansion, and a park. The upper dome houses landing pads, a communication dish, etc.

I teach a unique course that I call STEAM it Up, where students create projects that integrate science, technology, engineering, arts, and math. I’ve reported on these projects in my other blog site (, and they include designing inquiry chemistry experiments to study the variables of dyeing cloth, making marbled paper to study fractal math patterns, and building steampunk costumes. To bring in the Mars theme, we decided to build a sculpture of a possible Mars colony out of junk and repurposed items.

Constructing the city

My STEAM it Up students constructing the base of the city.

A few years ago, someone donated pieces of medical equipment to my previous school that came from some doctor’s office. I wasn’t there when the donation came in, or I would have turned much of it down as we had no use for many of the items. After all, what was I going to do with a broken down avocado green 1970s vintage water still? But some of the items were interesting from a junk sculpture point of view, including a plastic autoclave with four levels used for sterilizing surgical equipment. I thought at the time that it looked like a futuristic city. We decided to start with that as the basis of our colony – a multilevel domed city on Mars. The plastic grids of the autoclave would be the floors or levels of the city, held up by central columns made from microscope slide disinfecting bottles (old style, made from glass) that were also donated. We sketched it out on my whiteboard and decided what the different levels would be for.

Main levels constructed

The four main levels after construction. The levels were offset to allow more light to penetrate through the levels. On Mars, each level would be enclosed in a clear dome.

My first semester STEAM it Up students began construction and put together the main levels and built some smaller pieces of equipment out of my extensive collection of old motor and electronics parts. These would be factories and manufacturing plants for the colony. A student used old Macintosh charging cord adapters that had fallen apart (they tend to do this) and strips of ruffled foil from a princess party tiara to make Mars rovers. A student created the upper dome from the autoclave lid, adding landing pads for shuttles, an observatory, a defensive laser turret, and a communications dish. Another student built a base for the city. As first semester ended, I added some single family housing units on the second level made from Trulicity injection caps and the rubber feet that were taken off of my lab stools. I created the final pillars for the fourth floor and attached the dome to the top.

Adding upper pillars

During winter break, I added residential housing units to the second level and created pillars to support the upper dome.

Now you might wonder what this has to do with STEM (the art part is obvious). This was really an exercise in engineering and materials science. The students had to work out how to attach all of these different materials from many sources together so that they wouldn’t fall apart, have strength in the load bearing members, and be aesthetically pleasing and symmetrical so that it wouldn’t tip over. We wanted it to look like a deliberate piece of graceful engineering and architecture – seemingly delicate but actually sturdy and stable. And we had to figure out how to fit it all together with rods, brackets, bolts, wire, and glue. We tried several types of adhesives and finally selected E-6000, which takes about 20 minutes to set up but dries clear and hard and attaches many types of materials together. Time will tell if it holds up to UV light or turns yellow like some adhesives that I’ve tried.

Paper mache

Baseboards with paper maché added. The large based used traditional newspaper strips soaked in flour-water paste, the other two used commercial paper pulp. We designed it to look like a realistic site on Mars with craters that have been partially removed for construction.

As the first semester ended, I proposed several names for our colony based on ancient words for “Mars” and “city.” These included:

Huo Hsing Shr (Chinese)
Kasei Shi (Japanese)
Shalbatana Alu (Akkadian)
Simudopolis (Sumerian/Greek)
Mangalakha (Sanskrit) – this was my favorite
Tiuburg (Teutonic)
Ma’adim Salem (Hebrew)
Hrad K’aghak’(Armenian)
Harmakhis Delphi (Eqyptian/Greek)
Al-Qahira Madina (Arabic)
Marte Cuidad (Spanish)
Mawrth Dinas (Welsh)
Nirgal Alu (Babylonian)
Labouville (French)
Aresdelphia (Greek)

Painting the bases

STEAM it Up students painting the dried baseboards using tempura paint.

Many of the river channels on Mars bear these names, such as Shalbatana Vallis and Mawrth Vallis. The students liked several of these, but one student proposed that we name it Arrakeen after the capital city in Frank Herbert’s desert world Arrakis from the classic science fiction novel Dune. This is the name we chose. Our city is now Arrakeen Colony.

Painted baseboards

The completed baseboards, painted to look like the surface of Mars.

When second semester came, my new group of STEAM it Up students continued to work on the model. They built more equipment, ranging from construction sites to bulldozers, steamrollers, communication equipment, air processing plants, hospitals, etc. Many of the parts move or spin, such as the rotating communications center or the construction crane arm. They built several ground-to-orbit shuttles and cargo carriers, factories, and other parts. We found a 3D model of an astronaut online and printed out a bunch of them as small as we could manage (although they are still about twice as big as our city scale would dictate). Several students brought in HO scale plant materials – plastic grass, trees, bushes, etc – and used Pyrex jars, glass bottles, and plastic domes to build a series of greenhouses. They’ve also started to glue plastic strips under the top level in order to add trees for a park and fountain.

Arrakeen-other side

Arrakeen City near completion.

The biggest job was preparing the bases for all this. I purchased some paper maché fiber at a craft store and we used it to build up Mars terrains on two baseboards. We used traditional paper maché made from strips of torn newspaper soaked in a flour-water solution to build up a terrain on the larger base for the city. These took several days to dry. We then used orange, brown, and tan tempura to paint the bases to look like Mars soil. The end result was quite good, although the traditional newspaper strips cracked in places.

Construction site-2

Construction site on Mars. The large building under construction (left) is for manufacturing solar panels, a critical limiting factor for expanding the colony. Notice the construction crane with moving arm. A bulldozer is pushing up dirt into a ridge, with a steamroller flattening the dirt behind. At the lower right, a nuclear power plant and charging station is used to recharge the equipment batteries, aided by two small solar panels. A fork lift is parked nearby awaiting recharge. Astronauts in spacesuits are working at the site. Nearer the city stands the main communication link with Earth and a rotation communication and radar installation. Two small rovers are attached by access tubes to the city.

With the bases complete, we glued the factories, greenhouses, astronauts, and equipment in place and mounted the entire city onto the large base. The end result is better than I had envisioned. There is a great deal of interesting detail, and the total effect looks quite good.


Greenhouses and Air Circulation Center: On the other side of the city from the construction site stand a series of greenhouses to recirculate air and add oxygen. Most oxygen is produced by cracking atmospheric carbon dioxide in the processing plant next to the main greenhouse. Initial power for the city is supplied by the nuclear power plant in the upper left. At lower left is the heating plant and main circulation pumping station for the greenhouses.

There are still things to complete over the final few weeks of the semester. We need to finish the park on the top level and add the mayor’s mansion and the university. The third level has a hospital but we still need to create administrative offices, a school, and other buildings. The second level has ten housing units and pumping facilities but needs more. The bottom level needs a few more small manufacturing plants. And we need to add greenery and plants wherever we don’t have buildings, as a Mars colony would need as many plants as possible. We got some glue on the outside of the dome the other day and tried to clean it off with acetone, but that only started dissolving the dome’s plastic. We’ve covered that up with a solar panel made from a metal grid and some sparkly blue paper cut from an old folder I had. We have several such solar panels elsewhere in the model. Lastly, when all is in place, we’ll need to touch up the paint in places and add smaller details.

Roof with shuttles

Upper dome with landing pads. The shuttle models are attached with magnetic buttons. Notice the communications dish, the defensive laser turret, and the observatory dome and telescope.

I’m working on a virtual 3D model of the city with a moderate amount of detail in Daz3D Bryce, using pieces created in Blender and Carrara. Below left is a rendering of what it looks like so far.

Arrakeen 3D-partial

A 3D version of the city, partially complete. The levels would be enclosed in domes to protect the atmosphere inside.

In four weeks we’ll hold our STEAM Showcase at AAI. I want to put the finished colony on display, along with posters describing its construction and what all the parts are for. In the process of building this and imagining what a colony on Mars would really need, the students have learned a great deal about how our future might actually happen; how we may someday plan and build a city on Mars.

Residential Level

Residential and Manufacturing Levels of Arrakeen City.

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , | Leave a comment

Using Mars MOLA 3D Data

Data video title

The title for my Mars 3D Data video.

Fourteen years ago I was on a quest. I knew that 3D altitude data of Mars was available online because I had seen it used in illustrations for National Geographic and other magazines. I wanted to figure out how to find the data and use it in my own 3D modeling software. This wound up being more complicated than I had anticipated and took several months of gradual tinkering, lots of e-mails, and some help from people who were doing it. Finally, I succeeded. I had to download the data as uncompressed .img files from the Mars MOLA data page at the NASA Planetary Data System Geosciences Node housed at the Washington University in St. Louis (WUSTL). Try saying that five times quickly . . . I then had to use some freeware software called 3DEM that could load the Mars .img files in directly, then export them as TIFFs or PNGs that I could crop in Adobe Photoshop, then load into my software of choice, Daz3D Bryce, as a grayscale heightmap.

Me Teaching Mars data

Teaching how to use the Mars MOLA 3D altitude data, a screen shot from my video.

One person that gave me valuable advice was Kees Veenenbos, whose Mars renderings appeared on the cover of National Geographic. He e-mailed me back and explained where to find the data and how to use Terragens to model it. Years later, when I met Artemis Westenberg as part of the Mars Education Challenge, I told her how I got started doing 3D Mars images and she told me she was good friends with Kees, and that she had some laminated posters of his images. Would I like them? Well – of course! They are hanging on the walls of my classrooms. Here is a link to a Huffington Post article about Kees’ work:

Kees image

An image created by Kees Veenenbos using Mars MOLA data and Terragens software. It shows the western end of Valles Marineris and Noctis Labrynthus.

In the years since, system software changes have made 3DEM obsolete. I tried loading the data into Adobe Photoshop as a raw image, but ran into a problem. The Mars data uses an aeroid, or “sea level” measurement as a zero point, and the altitude data is measured up and down from that level. However, Photoshop can’t read negative data. It created two gradients, one for the positive elevation and one for the negative. I figured out a work around in Photoshop, but it left a kind of bathtub ring where the data had to be blurred at the aeroid. I was able to use this technique for our lunar animations, but it wasn’t ideal.

Raw import settings for Mars data

Import settings for the raw .IMG Mars quadrangle data. The data has 16-bits per pixel with both positive and negative values (signed). Reading the .LBL file, the data is 11520 pixels wide by 5632 pixels tall. It is a large file, and may need to be cropped in Adobe Photoshop or other program.

In the meantime, I had started using a program from the National Institutes of Health called Image J. It allowed me to turn numerical data into a grayscale image. After years of using it for other purposes, it occurred to me one morning last year that it might be able to read the Mars .img data. I tried loading it in using the Import-Raw menu and found it had a choice for 16-bit signed data import. That sounded promising. I chose one of the 16 Mars quadrangles from the MOLA data site, typed in the size of the images (11520 by 5632 pixels at 16 bits per pixel) and chose OK. Viola! There was the data, in all its detail!

44n270 quadrangle in ImageJ

The full Mars quadrangle loaded into Image J. This is the megt44n270hb.img file, and contains the areas of Chryse Planitia, Ares Vallis, Aram Chaos, and Mawrth Vallis.

Since then I have used Image J for Mars and lunar data. I recently recorded a video demonstrating the steps for using this data in Daz3D Bryce. Here is the link to the video in YouTube:

Terrain editor in Bryce

Loading the cropped grayscale height map image into the terrain editor in Daz3D Bryce. You must increase the resolution of the grid to Gigantic size, then click the Load buttons under the Pictures tab.

Once you get the image cropped and saved in a format such as a 16-bit PNG or PGM, most 3D modeling programs can load it in as a grayscale height map and create a terrain out of it. I find that and entire Mars quadrangle is rather large for most 3D software to handle, so once I save it as a PNG or PGM from Image J, I use Photoshop or other image manipulation software to crop smaller pieces from the data, which I build into terrains.

Chryse rendering in Bryce

The model of Chryse Planitia flattened on the Y axis with an altitude sensitive texture, rendering in Daz3D Bryce.

I have experimented with printing out these models with a 3D printer. I use Daz3D Carrara to load a cropped height map onto a terrain model, then build a frame around it, rotate the terrain and frame 45 degrees, then build a support underneath it. By rotating the model, I can use the maximum resolution of the printer and avoid printer-added supports so that no clean up is necessary. It’s taken some experimentation to get the size and structure of the frame right, but we have had a few successful prints.

CHryse render 2

Final terrain rendered in Daz3D Bryce.

Mawrth Vallis 3D print

3D print of the Mawrth Vallis area of Mars. By rotating the model 45 °, the 3D printer can have higher resolution without needing extra supports or clean up.

Posted in Uncategorized | Tagged , , , , , , , , , , , , , , | 2 Comments

Students as Teachers


A continuum of student activities, ranging from passive through active to creative.

One of the cornerstones of my education philosophy is that students learn best when they are expected to teach concepts to others. I’ve talked about this at some length on my other blog site at: It is based on the old saying, “Give a man a fish, and you feed him for a day. Teach a man how to fish, and you feed him for a lifetime.” To which I would add, “Train a man how to teach others how to fish, and you’ve fed an entire village forever.”


My student Desmond presenting at the 2015 STEM Expo.

A number of years ago, I developed a diagram to illustrate the continuum of possible student activities ranging from students as passive consumers of educational content through students interacting with content to students as creators and producers of content. On the left (passive) side, students listen to lectures or watch a video. Since their minds wander, they maybe retain 10% of what’s taught.

In the middle, where students interact with content, are the types of activities we would label “hands on.” They are doing an active cookbook style lab or completing a step-by-step activity where the results are known and predictable. This is certainly better than passively sitting and consuming content, as they are up and doing, but we can do better. We can go beyond hands-on.

On the right side are creative students, doing self-directed inquiry labs where the results aren’t known in advance, the activities are student centered rather than teacher centered, and the students actually create a product, such as a video or lesson plan, that can be shared with others. On the far right side, students become teachers themselves and share what they have learned with others or, best yet, they actually become scientists and ask questions and determine answers, communicating their results with a larger world. What we call Project-Based Learning should largely exist on the right side of this diagram, where students work on self-determined projects with meaningful results that solve local (or even global) problems.


David Black presenting at the 2015 STEM Fest at South Towne Plaza in Sandy, Utah

During the 2014-15 school year, my astronomy students at Walden School were given several opportunities to teach others and share what they’d learned. At the beginning of the school year, the STEM Action Center set up a series of areas in a building at the Utah State Fair where students and teachers from participating schools could present what they are doing. I heard about this opportunity and volunteered my students, and had six students come up with me to do a series of astronomy and chemistry related mini lessons. I had been up the day before by myself to demonstrate how to do simple 3D modeling using Sculptris by Pixologic; I took up about six laptop Macs and anyone that I could pull in and sit down I showed how to model a head. There just weren’t that many people stopping by this building. The next day, my students helped do the demonstrations and went outside to gather people to come in. Again, the numbers weren’t too high but we had fun and showed some of my standby presentations. I ran into a former colleague of mine, Paul Fowkes, who is now teaching at the Granite Technical Center.


Cece and Desmond at the 2015 STEM Fest.

One of the other schools at the State Fair was Beehive Science and Technology Academy and I talked with the students and Director while we were there and he told me that they were planning on hosting a STEM Expo at South Towne Plaza in the spring and invited us to participate. When spring came, two of my students, Desmond and Cece, agreed to travel with me up to Sandy and present. On Saturday, April 25, we travelled up to Sandy and wheeled our materials into the Plaza on my old dilapidated equipment cart. We found that one of the Plaza’s main halls was filled up with students, mostly from Beehive, making presentations. We found a spot along one wall where we could tape up a makeshift screen and near enough to a power outlet that we could plug in our projector. We laid out examples of student STEAM projects and got ready to present.

We spent two hours going through several short demonstrations of about 20 minutes each, including our MESSENGER Student Planetary Investigator project, how to use Sculptris, creating stop motion animations of chemical reactions, and other projects my classes have worked on. Desmond and Cece had the chance to wander around and look at the other presentations going on in between helping me present, and we had a fun time of it. We also got some nice T-shirts for our troubles.


Wyatt helping participants during our first session at the BYU Astrofest, May 16, 2015.

On a Saturday, May 16, 2015, Brigham Young University’s Physics and Astronomy Department held their annual Astrofest and asked me to come present some of our activities, since I had done my BYU Research Experiences for Teachers research that previous summer. I came up with five classes, each to last one hour, starting at 11:00 with one hour off for lunch and to prepare for the last session. The first session was to make RGB images out of WISE infrared data, the second to use the MESSENGER data to make images of Mercury, the third to make to make a stop motion animation of the evolution of the moon, and the fourth to make 3D models using Mars data and search for landing sites for future missions. These were all computer based and merely required me to load some files onto the 12 laptops I brought with me and use my Mars posters and maps. Our last class was to make models of space probes out of candy. I thought this might be a good draw for the mostly elementary aged attendees, and Dr. Denise Stephens, the professor organizing the science day, agreed to pick up the materials and candy I would need.


A simulated lunar surface at the BYU Astrofest in May 2015.

I drove up onto campus and onto the broad sidewalks to the Eyring Science Center and my son Jonathan helped me unload my minivan and take the computers, posters, etc. into the building. I drove the car back to the parking lot and we set up in the room assigned us, just off the stairs on the second floor east hallway. I had to run over to the Wilkinson Center to buy a dongle, because my Mac dongle didn’t seem to be working. Two of my students, Nate and Wyatt, met us at the ESC and helped to run the classes. My first four classes were not terribly well attended – maybe 10-15 each session. But the candy space probe session was packed, so much so that we had to run people through in shifts.


David black presenting how to use LOLA data from the Lunar Reconnaissance Orbiter probe.

We laid out various types of candy ranging from Graham crackers, stick pretzels, and wafer cookies to Rolo candies, Skittles, Hersey’s kisses, Smarties, Tootsie Rolls, and many more. We allowed them to use coffee stirrers and wooden skewers, and glued it all together with frosting and marshmallow crème. To encourage students to build models of actual probes, I prepared copies of Mars probe diagrams such as Mars Pathfinder and the Exploration Rovers.


Enhanced color Mercury data from the MESSENGER probe, as created by participants at BYU’s 2015 Astrofest.

A rough count of all the participants in just this one hour was about 200. Altogether, we taught about 250-260 children and parents. Jonathan was my photographer, using my iPad’s camera, and many photos were blurry but some turned out well. I am showing you some of them here.


Participants in Astrofest making candy space probe models; May 2015.

The results of this activity were fun and excellent, and some actually did look like the real thing. Others were rather fanciful. Jon built one of his own and brought it home. There was probably as much eating of the candy as there was building. The room was something of a mess after this, so we spent some time cleaning up and trying to get the marshmallow crème off the tables (somehow it got everywhere even with the tablecloths we brought). It was a fun but exhausting day. Wyatt and Nate both enjoyed themselves and were very helpful managing the crowds and helping to teach and answer questions. This was my main reason for doing this – for the benefits it would bring my own students. Wyatt told me after that even though he wasn’t planning on returning to Walden, he still wanted me to have him help me next year.


Using Rolos for wheels.


Not exactly a space probe: “Ex-ter-min-ate! Ex-ter-min-ate!”


The Mars Pathfinder lander built out of candy. I especially like the little wafer Sojourner Rover.


Building space probe models out of candy.


Another satisfied customer . . .


Our candy space probe activity was a huge hit; we had to let people do this in three shifts to get everyone in, and counted about 200 people for this activity.

Posted in Uncategorized | Tagged , , , , , , , , , , | Leave a comment

MESSENGER of the Gods


3D image of Mercury using MDIS data from the MESSENGER space probe and mapping it onto a sphere in Daz3D Bryce.

My second semester astronomy class during the 2014-15 school year at Walden School of Liberal Arts focused on planetary science. Our trip to the American Astronomical Society conference in early January had been the final project of our first semester class, which had focused on astrophysics. I wanted a comparable project that involved analyzing planetary data for the second semester.


3D image of Mercury using MESSENGER data. The bright spot is the Rachmaninoff region of Mercury.

I had heard of a program called MESSENGER Student Planetary Investigators, where teams of students in schools could collaborate with scientists on the MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) space probe orbiting Mercury to download data and images. I applied for it during the fall and we were accepted.


Large double-ringed impact basins on Mercury. The distinct crater at the north has rays that cover much of Mercury’s surface, but they are much more obvious in our enhanced color images (see below).

We held a series of monthly webcasts with scientists on the MESSENGER team. The probe was the first to visit Mercury since the three flybys of Mariner 10 in 1975. Launched on August 3, 2004, it took a looping path past Venus, twice past Earth, and three times past Mercury to gradually slow down its orbit around the Sun to where Mercury could capture it into orbit. It went into orbit on March 18, 2011 and collected data for four years before running out of navigation propellant. It was deliberately de-orbited (NASA-speak for “crashed”) into the surface of Mercury on April 30, 2015, which was during the time we were studying it.


Here is the same crater in enhanced color. The bluish-lavender lines are rays ejected from the impact. They are more visible in the 430 nm MDIS image, here mapped to the blue channel in Adobe Photoshop.

Our first webinar was with Dr. Nancy Chabot, who taught the students about the mission and the various on-board instruments, including the Mercury Dual Imaging System (MDIS) and the Mercury Laser Altimeter (MLA). The MDIS could image the surface using filters in ten wavelengths, and we learned where and how to access the data in what was called Quickmaps and choose which wavelengths to download. Each image was over one gigabyte in size, and stretched the memory of our Macintosh laptops to the limit. Because of Mercury’s slow rotation, the images show high Sun elevation in some areas and lower angles in others, and quite a bit of adjustment has been made to patch the mosaics together. The MLA 3D data of the surface was only available for the northern hemisphere, because of the highly elliptical nature of MESSENGER’s orbit.


More rays ejected onto the Mercury surface by impacts. Some of these impacts have rays that cover much of the surface. In this enhanced color image, impact features are blue-lavender and volcanic features are yellow-orange (higher sulfur).

We started by taking one of the MDIS images in visible wavelengths and used it as a texture map on a sphere in our 3D software to create an animation of Mercury rotating. This was remarkable in itself as only 40% of the surface had ever been mapped before MESSENGER.


A large double-ringed impact basin on Mercury. In this enhanced color image, yellow-orange areas indicate volcanic features. This crater was filled by a basaltic eruption.

Using the same technique we had learned for the WISE mission, we picked three of the MDIS images (including some infrared) and put them into the RGB channels in Adobe Photoshop. Different students used different images, but whichever one was the shortest wavelength, we put into the blue channel. The middle wavelength went into the green channel, and the longest (usually infrared, such as 1000 nanometers) went into the red channel. The result wasn’t terribly exciting at first, because it showed basically the same boring gray color that Mercury appears in normal visible light. But I had the students push the contrast and saturation of the colors to the maximum, and interesting things began to happen.


In this enhanced color image, the crater with the yellow bottom shows hollows and pits that are fairly recent and show that Mercury’s surface is still evolving. The blue-lavender lines are ejected rays from a crater to the north.

One student, Elena Mitchell (who had also gone to Seattle for the AAS), decided she wanted to pursue this research further as a science fair research project. She chose the three images that were furthest apart: 430 nm (violet), 730 nm (far red), and 100 nm (infrared) and combined them into the blue, green, and red channels in Photoshop. She then stretched the saturation and color contrast and came up with images that showed different colors for impact features (lavender, we think because of higher levels of magnesium sulfate) and volcanic features (yellow-orange, because of more sulfur). She had picked the wavelengths specifically to show up sulfur. She chose several areas of particular interest and learned their names. All Mercury features are being named after famous artists, such as the Rachmaninoff Basin. Her images showed yellow-orange pits in the Lermontov region called hollows that are fairly recent and show that the surface of Mercury is still evolving. Large double-ringed craters showed different shades of orange to red, indicating different basaltic eruptions. Large lavender rays covering much of the surface radiate out from impact basins such as Caloris Basin.


The brightest area on Mercury is this region northeast of Rachmaninoff Basin. In this enhanced color image, it is clearly showing recent volcanism. The basin itself shows a double ring with different chemical compositions in each ring – more sulfur-based materials in the center (possibly from the volcanic center to the southeast), more magnesium in the outer ring (if our analysis is correct). You can also see how piecing the mosaics together led to some calibration issues when we enhanced the color.

She worked very hard to understand what the colors indicated, looking at other instruments that got data on the surface composition. She also found the MLA data for the northern hemisphere and created 3D models, although they are not as detailed as the ones we’ve done for Mars and the Moon. She tried to match up the 3D models with Lermontov and other areas that showed interesting features. She even built a paper 3D model of the MESSENGER probe.


Lermantov Crater shows pits and hollows inside that appear to be associated with recent volcanic activity. Of course, on Mercury, “recent” could mean a billion years.

She was the only student from Walden School that did a science fair project, and she was able to advance from the Charter District fair in February to the regional Central Utah Science and Engineering Fair in March. I was very pleased when her project was announced as one of the Sweepstakes winners, which meant she would be going on to the International Science and Engineering Fair in Pittsburg in May. This has been a bucket list item of mine, to help a student go all the way with a science fair project. She also won a full-ride scholarship to Westminster College.


A view toward the north pole of Mercury using enhanced MDIS images of 430, 630, and 1000 nm mapped into the RGB channels in Adobe Photoshop and enhanced (added contrast and color saturation). You can see ghost craters where lava flows have filled in the crater but left slight impressions behind.

In between all of this, she was selected as our school’s Science Sterling Scholar, a competition for high school students in 13 categories, where one student for each category is chosen from a school. They complete a portfolio, write essays, and interview for the position. Elena made it past the regional interview and was one of the 15 finalists for the entire state of Utah.


Elena’s science fair project. She explains the process she used to combine three wavelengths into the RGB channels of Adobe Photoshop to make our enhanced color images. She also took MLA data to make 3D models, and built a paper model of MESSENGER (below left).

She spent five days in Pittsburg for ISEF, and it was an amazing experience for her. She won a geology association award, and is now studying Geological Engineering at the University of Utah. It just goes to show how important it is for students to get their hands on real data and do their own original science. It can engage and inspire them and show them that science is not just for nerds and brainiacs. Anyone can become a scientist, if they’re motivated enough. Elena was always one of my best students, but she hadn’t really considered geology as a career until she did this Mercury data project. Between using the MESSENGER data, traveling to AAS, and being part of NITARP, a new world of possibilities opened up.

This is why I am a teacher.


Elena with her science fair project. She won a Sweepstakes Award at the Central Utah Science and Engineering Fair (CUSEF) and traveled to the International Science and Engineering Fair in Pittsburg in May, 2015.

Posted in Uncategorized | Tagged , , , , , , , , , , , , , | Leave a comment